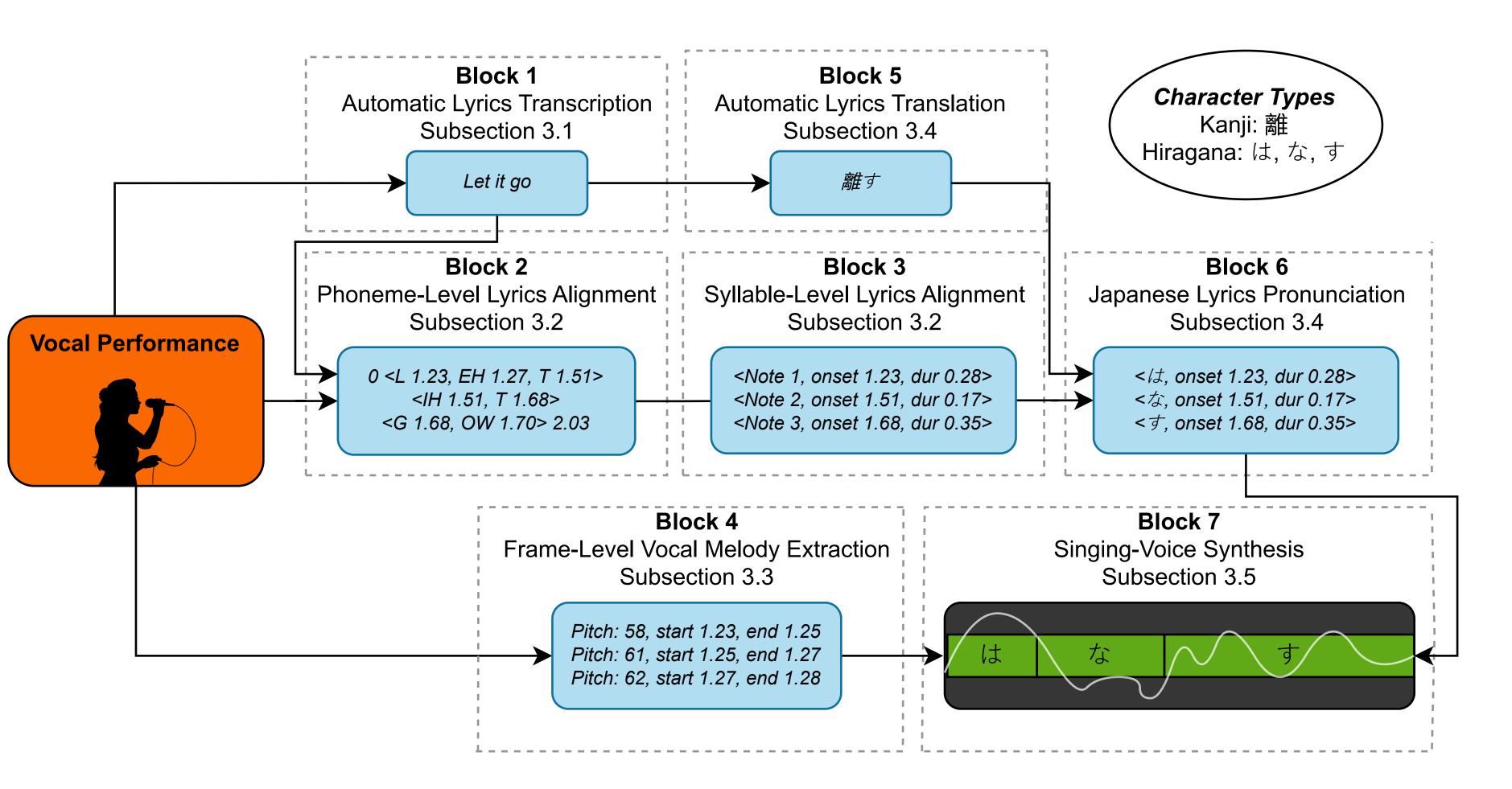


PolySinger: Singing-Voice to Singing-Voice Translation from English to Japanese

SILAS ANTONISEN AND IVÁN LOPÉZ-ESPEJO

DEPT. OF SIGNAL THEORY, TELEMATICS AND COMMUNICATIONS, UNIVERSITY OF GRANADA, SPAIN


UNIVERSIDAD DE GRANADA

INTRODUCTION

• Modern singing voice synthesis (*SVS*) voicebanks can sing cross-lingually.

• SVS and music generation applications have no feature for automatic song translation.

PROPOSED METHOD

• Potential of cross-lingual SVS is untapped without automatic song translation.

• Vocal and lingual processing methods have more focus and greater performance in speech than singing.

• No *complete system* for transcription, singable translation and synthesis faithful to the original song exists.

• We present the first singing-voice to singing-voice translation (*SV2SVT*) system.

PIPELINE BREAKDOWN

Record English vocal performance.

• **Block 1:** Transcribe lyrics.

• **Block 2:** Align phonetic sequence of the transcribed lyrics to audio.

• **Block 3:** Categorize phoneme sequences into syllables with onsets and durations.

EXPERIMENTS

Method

Whisper-Large-V3 Schufo lyrics-aligner CMU Pronunciation Dictionary Omnizart Vocal-Contour nllb-200-distilled-600M

Module

Lyrics transcription (*Block 1*)
Phoneme-level lyrics alignment (*Block 2*)
Defining syllables (*Block 3*)
Vocal-contour transcription (*Block 4*)
Baseline model for translation (*Block 5*)

• **Block 4:** Frame-level vocal-contour transcription.

• **Block 5:** Generate a list of possible Japanese translations.

• Block 6:

- Break down all kanji in all translated sequences into their hiragana-form pronunciations and separate the words (Japanese uses no whitespace).
- Choose the translated sequence with the most appropriate amount of syllables as best translation.
- Align Japanese syllables (mora) with prior onsets and durations of English syllables.

• **Block 7:** Define notes in SVS engine with Japanese syllables bounded by onsets and durations. Automate the pitch values of notes with vocal-contour.

nllb-200-distilled-600M (fine-tuned)	Fine-tuned model for translation (Block 5)
pyKAKASI	Convert kanji to hiragana (Block 6)
Nagisa	Word separation (<i>Block 6</i>)
Synthesizer V	SVS (Block 7)

• No standard evaluation metric for SV2SVT or song translation exists.

• Mean opinion score test of 6 questions with 6 native Japanese speakers, testing both the baseline and fine-tuned translation models. Examples used in evaluation can be found at silasantonisen.github.io/polysinger.

1 = Very Poor, 2 = Poor, 3 = Neutral, 4 = Good, and 5 = Very Good.

ID	Question	Baseline	Fine-tuned
Q1	How much sense do the lyrics make?	2.53 ± 0.49	2.17 ± 0.46
Q2	How natural is the Japanese used in the lyrics?	2.57 ± 0.48	2.30 ± 0.48
Q3	How well is the meaning of the original lyrics preserved?	2.47 ± 0.44	2.10 ± 0.44
Q4	How singable are the generated lyrics?	2.40 ± 0.41	2.23 ± 0.44
Q5	How well are the lyrics and melody aligned?	2.50 ± 0.52	2.10 ± 0.40
Q6	What is the overall quality of the generated Japanese singing?	2.33 ± 0.45	2.13 ± 0.41

• High variance in opinion scores.

• No statistically significant differences between the baseline and fine-tuned translation systems.

• Most recurring comments from participants revolved around quality and naturalness of the Japanese lyrics, e.g., incorrect pronunciations or word separations, not necessarily the translation.

CONCLUSION

• We have presented the first **SV2SVT** system in the literature.

• Our method facilitates a baseline framework for future development in English to Japanese **SV2SVT** as well as a baseline methodology for other language combinations.

• Further research is required for robust **SV2SVT**. Alternative technologies and methods must be tested, and robust tools must be developed. This will primarily be our future work.

CONTACT INFORMATION

E-mail: **santon@ugr.es**

Signal Processing, Multimedia Transmission and Speech/Audio Technologies Group, **SigMAT**. Dept. of Signal Theory, Telematics and Communications, University of Granada, Spain.